Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.578
Filtrar
1.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542065

RESUMO

Non-alcoholic fatty liver disease (NAFLD) has emerged as a significant liver ailment attributed to factors like obesity and diabetes. While ongoing research explores treatments for NAFLD, further investigation is imperative to address this escalating health concern. NAFLD manifests as hepatic steatosis, precipitating insulin resistance and metabolic syndrome. This study aims to validate the regenerative potential of chimeric fibroblast growth factor 21 (FGF21) and Hepatocyte Growth Factor Receptor (HGFR) in NAFLD-afflicted liver cells. AML12, a murine hepatocyte cell line, was utilized to gauge the regenerative effects of chimeric FGF21/HGFR expression. Polysaccharide accumulation was affirmed through Periodic acid-Schiff (PAS) staining, while LDL uptake was microscopically observed with labeled LDL. The expression of FGF21/HGFR and NAFLD markers was analyzed by mRNA analysis with RT-PCR, which showed a decreased expression in acetyl-CoA carboxylase 1 (ACC1) and sterol regulatory element binding protein (SREBP) cleavage-activating protein (SCAP) with increased expression of hepatocellular growth factor (HGF), hepatocellular nuclear factor 4 alpha (HNF4A), and albumin (ALB). These findings affirm the hepato-regenerative properties of chimeric FGF21/HGFR within AML12 cells, opening novel avenues for therapeutic exploration in NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Fígado/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo
2.
J Physiol ; 602(7): 1427-1442, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38468384

RESUMO

Fibroblast growth factor-2 (FGF2) is involved in the regulation of affective behaviour and shows antidepressant effects through the Akt and extracellular signal regulated kinase (ERK) 1/2 pathways. Nudix hydrolase 6 (NUDT6) protein is encoded from FGF2 gene's antisense strand and its role in the regulation of affective behaviour is unknown. Here, we overexpressed NUDT6 in the hippocampus and investigated its behavioural effects and the underlying molecular mechanisms affecting the behaviour. We showed that increasing hippocampal NUDT6 results in depression-like behaviour in rats without changing FGF2 levels or activating its downstream effectors, Akt and ERK1/2. Instead, NUDT6 acted by inducing inflammatory signalling, specifically by increasing S100 calcium binding protein A9 (S100A9) levels, activating nuclear factor-kappa B-p65 (NF-κB-p65), and elevating microglia numbers along with a reduction in neurogenesis. Our results suggest that NUDT6 could play a role in major depression by inducing a proinflammatory state. This is the first report of an antisense protein acting through a different mechanism of action than regulation of its sense protein. The opposite effects of NUDT6 and FGF2 on depression-like behaviour may serve as a mechanism to fine-tune affective behaviour. Our findings open up new venues for studying the differential regulation and functional interactions of sense and antisense proteins in neural function and behaviour, as well as in neuropsychiatric disorders. KEY POINTS: Hippocampal overexpression of nudix hydrolase 6 (NUDT6), the antisense protein of fibroblast growth factor-2 (FGF2), increases depression-like behaviour in rats. Hippocampal NUDT6 overexpression triggers a neuroinflammatory cascade by increasing S100 calcium binding proteinA9 (S100A9) expression and nuclear NF-κB-p65 translocation in neurons, in addition to microglial recruitment and activation. Hippocampal NUDT6 overexpression suppresses neurogenesis. NUDT6 exerts its actions without altering the levels or downstream signalling pathways of FGF2.


Assuntos
Depressão , Fator 2 de Crescimento de Fibroblastos , NF-kappa B , Animais , Ratos , Fator 2 de Crescimento de Fibroblastos/genética , Inflamação/genética , Neurogênese/genética , NF-kappa B/metabolismo , NF-kappa B/farmacologia , Proteínas Proto-Oncogênicas c-akt , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Depressão/genética , Depressão/metabolismo
3.
Hepatol Commun ; 8(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38551384

RESUMO

BACKGROUND: Alcohol-associated liver disease (ALD) is a major health care challenge worldwide with limited therapeutic options. Although mesenchymal stem/stromal cells (MSCs) represent a newly emerging therapeutic approach to treat ALD, thus far, there have been extensive efforts to try and enhance their efficacy, including genetically engineering MSCs. FGF21, an endocrine stress-responsive hormone, has been shown to regulate energy balance, glucose, and lipid metabolism and to enhance the homing of MSCs toward injured sites. Therefore, the purpose of this study was to investigate whether MSCs that overexpress FGF21 (FGF21-MSCs) improve the therapeutic effect of MSCs in treating ALD. METHODS: Human umbilical cord-derived MSCs served as the gene delivery vehicle for the FGF21 gene. Human umbilical cord-derived MSCs were transduced with the FGF21 gene using lentiviral vectors to mediate FGF21 overexpression. We utilized both chronic Lieber-DeCarli and Gao-binge models of ethanol-induced liver injury to observe the therapeutic effect of FGF21-MSCs. Liver injury was phenotypically evaluated by performing biochemical methods, histology, and inflammatory cytokine levels. RESULTS: Compared with MSCs alone, administration of MSCs overexpressing FGF21(FGF21-MSCs) treatment significantly enhanced the therapeutic effect of ALD in mice, as indicated by the alleviation of liver injury with reduced steatosis, inflammatory infiltration, oxidative stress, and hepatic apoptosis, and the promotion of liver regeneration. Mechanistically, FGF21 could facilitate the immunomodulatory function of MSCs on macrophages by setting metabolic commitment for oxidative phosphorylation, which enables macrophages to exhibit anti-inflammatory inclination. CONCLUSIONS: Our data elucidate that MSC modification by FGF21 could enhance their therapeutic effect in ALD and may help in the exploration of effective MSCs-based cell therapies for the treatment of ALD.


Assuntos
Fatores de Crescimento de Fibroblastos , Hepatopatias Alcoólicas , Animais , Humanos , Camundongos , Etanol , Fatores de Crescimento de Fibroblastos/genética , Hepatopatias Alcoólicas/terapia , Macrófagos , Células Estromais
5.
Nat Commun ; 15(1): 1192, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331907

RESUMO

Overfeeding triggers homeostatic compensatory mechanisms that counteract weight gain. Here, we show that both lean and diet-induced obese (DIO) male mice exhibit a potent and prolonged inhibition of voluntary food intake following overfeeding-induced weight gain. We reveal that FGF21 is dispensable for this defense against weight gain. Targeted proteomics unveiled novel circulating factors linked to overfeeding, including the protease  legumain (LGMN). Administration of recombinant LGMN lowers body weight and food intake in DIO mice. The protection against weight gain is also associated with reduced vascularization in the hypothalamus and sustained reductions in the expression of the orexigenic neuropeptide genes, Npy and Agrp, suggesting a role for hypothalamic signaling in this homeostatic recovery from overfeeding. Overfeeding of melanocortin 4 receptor (MC4R) KO mice shows that these mice can suppress voluntary food intake and counteract the enforced weight gain, although their rate of weight recovery is impaired. Collectively, these findings demonstrate that the defense against overfeeding-induced weight gain remains intact in obesity and involves mechanisms independent of both FGF21 and MC4R.


Assuntos
Obesidade , Receptor Tipo 4 de Melanocortina , Masculino , Camundongos , Animais , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Obesidade/genética , Obesidade/prevenção & controle , Aumento de Peso , Fatores de Crescimento de Fibroblastos/genética , Peso Corporal/fisiologia
6.
Am J Physiol Renal Physiol ; 326(5): F751-F767, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38385175

RESUMO

Conduit arterial disease in chronic kidney disease (CKD) is an important cause of cardiac complications. Cardiac function in CKD has not been studied in the absence of arterial disease. In an Alport syndrome model bred not to have conduit arterial disease, mice at 225 days of life (dol) had CKD equivalent to humans with CKD stage 4-5. Parathyroid hormone (PTH) and FGF23 levels were one log order elevated, circulating sclerostin was elevated, and renal activin A was strongly induced. Aortic Ca levels were not increased, and vascular smooth muscle cell (VSMC) transdifferentiation was absent. The CKD mice were not hypertensive, and cardiac hypertrophy was absent. Freshly excised cardiac tissue respirometry (Oroboros) showed that ADP-stimulated O2 flux was diminished from 52 to 22 pmol/mg (P = 0.022). RNA-Seq of cardiac tissue from CKD mice revealed significantly decreased levels of cardiac mitochondrial oxidative phosphorylation genes. To examine the effect of activin A signaling, some Alport mice were treated with a monoclonal Ab to activin A or an isotype-matched IgG beginning at 75 days of life until euthanasia. Treatment with the activin A antibody (Ab) did not affect cardiac oxidative phosphorylation. However, the activin A antibody was active in the skeleton, disrupting the effect of CKD to stimulate osteoclast number, eroded surfaces, and the stimulation of osteoclast-driven remodeling. The data reported here show that cardiac mitochondrial respiration is impaired in CKD in the absence of conduit arterial disease. This is the first report of the direct effect of CKD on cardiac respiration.NEW & NOTEWORTHY Heart disease is an important morbidity of chronic kidney disease (CKD). Hypertension, vascular stiffness, and vascular calcification all contribute to cardiac pathophysiology. However, cardiac function in CKD devoid of vascular disease has not been studied. Here, in an animal model of human CKD without conduit arterial disease, we analyze cardiac respiration and discover that CKD directly impairs cardiac mitochondrial function by decreasing oxidative phosphorylation. Protection of cardiac oxidative phosphorylation may be a therapeutic target in CKD.


Assuntos
Cardiomegalia , Fator de Crescimento de Fibroblastos 23 , Miocárdio , Insuficiência Renal Crônica , Animais , Fator de Crescimento de Fibroblastos 23/metabolismo , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Modelos Animais de Doenças , Ativinas/metabolismo , Ativinas/genética , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Camundongos , Masculino , Fosforilação Oxidativa , Nefrite Hereditária/metabolismo , Nefrite Hereditária/patologia , Nefrite Hereditária/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Hormônio Paratireóideo/metabolismo
7.
Mol Genet Genomic Med ; 12(2): e2387, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38337160

RESUMO

BACKGROUND: Disease-related variants in PHEX cause XLH by an increase of fibroblast growth factor 23 (FGF23) circulating levels, resulting in hypophosphatemia and 1,25(OH)2 vitamin D deficiency. XLH manifests in early life with rickets and persists in adulthood with osseous and extraosseous manifestations. Conventional therapy (oral phosphate and calcitriol) improves some symptoms, but evidence show that it is not completely effective, and it can lead to nephrocalcinosis (NC) and hyperparathyroidism (HPT). Burosumab (anti-FGF23 antibody) has shown to be effective and safety in the clinical trials. METHODS: The current real-world collaborative study evaluated genetic, clinical and laboratory data of XLH Brazilian adult patients treated with burosumab. RESULTS: Nineteen unrelated patients were studied. Patients reported pain, limb deformities and claudication, before burosumab initiation. 78% of them were previously treated with conventional therapy. The severity of the disease was moderate to severe (15 patients with score >5). At the baseline, 3 patients presented NC (16.7%) and 12 HPT (63%). After 16 ± 8.4 months under burosumab, we observed a significant: increase in stature (p = 0.02), in serum phosphate from 1.90 ± 0.43 to 2.67 ± 0.52 mg/dL (p = 0.02); in TmP/GFR from 1.30 ± 0.46 to 2.27 ± 0.64 mg/dL (p = 0.0001), in 1,25 (OH)2 D from 50.5 ± 23.3 to 71.1 ± 19.1 pg/mL (p = 0.03), and a decrease in iPTH from 86.8 ± 37.4 pg/mL to 66.5 ± 31.1 (p = 0.002). Nineteen variants were found (10 novel). HPT tended to develop in patients with truncated PHEX variants (p = 0.06). CONCLUSIONS: This study confirms the efficacy and safety of burosumab on XLH adult patients observed in clinical trials. Additionally, we observed a decrease in iPTH levels in patients with moderate to severe HPT at the baseline.


Assuntos
Anticorpos Monoclonais Humanizados , Raquitismo Hipofosfatêmico Familiar , Adulto , Humanos , Raquitismo Hipofosfatêmico Familiar/tratamento farmacológico , Raquitismo Hipofosfatêmico Familiar/genética , Anticorpos Monoclonais/uso terapêutico , Brasil , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Fosfatos/uso terapêutico
8.
EMBO Mol Med ; 16(2): 238-250, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38228803

RESUMO

FGF19 hormone has pleiotropic metabolic functions, including the modulation of insulin sensitivity, glucose/lipid metabolism and energy homeostasis. On top of its physiological metabolic role, FGF19 has been identified as a potentially targetable oncogenic driver, notably in hepatocellular carcinoma (HCC). Nevertheless, FGF19 remained an attractive candidate for treatment of metabolic disease, prompting the development of analogs uncoupling its metabolic and tumor-promoting activities. Using pre-clinical mice models of somatic mutation driven HCC, we assessed the oncogenicity of FGF19 in combination with frequent HCC tumorigenic alterations: p53 inactivation, CTNNB1 mutation, CCND1 or MYC overexpression. Our data revealed a strong oncogenic cooperation between FGF19 and MYC. Most importantly, we show that this oncogenic synergy is conserved with a FGF19-analog Aldafermin (NGM282), designed to solely mimic the hormone's metabolic functions. In particular, even a short systemic treatment with recombinant proteins triggered rapid appearance of proliferative foci of MYC-expressing hepatocytes. The fact that FGF19 analog Aldafermin is not fully devoid of the hormone's oncogenic properties raises concerns in the context of its potential use for patients with damaged, mutation-prone liver.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Camundongos , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Hormônios
9.
Adv Mater ; 36(16): e2312559, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38266145

RESUMO

Abnormal silencing of fibroblast growth factor (FGF) signaling significantly contributes to joint dysplasia and osteoarthritis (OA); However, the clinical translation of FGF18-based protein drugs is hindered by their short half-life, low delivery efficiency and the need for repeated articular injections. This study proposes a CRISPR/Cas9-based approach to effectively activate the FGF18 gene of OA chondrocytes at the genome level in vivo, using chondrocyte-affinity peptide (CAP) incorporated hybrid exosomes (CAP/FGF18-hyEXO) loaded with an FGF18-targeted gene-editing tool. Furthermore, CAP/FGF18-hyEXO are encapsulated in methacrylic anhydride-modified hyaluronic (HAMA) hydrogel microspheres via microfluidics and photopolymerization to create an injectable microgel system (CAP/FGF18-hyEXO@HMs) with self-renewable hydration layers to provide persistent lubrication in response to frictional wear. Together, the injectable CAP/FGF18-hyEXO@HMs, combined with in vivo FGF18 gene editing and continuous lubrication, have demonstrated their capacity to synergistically promote cartilage regeneration, decrease inflammation, and prevent ECM degradation both in vitro and in vivo, holding great potential for clinical translation.


Assuntos
Cartilagem Articular , Exossomos , Microgéis , Osteoartrite , Humanos , Condrócitos , Lubrificação , Exossomos/metabolismo , Edição de Genes , Cartilagem Articular/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/uso terapêutico , Osteoartrite/metabolismo
10.
J Nutr Biochem ; 125: 109569, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38185346

RESUMO

Spermidine exerts protective roles in obesity, while the mechanism of spermidine in adipose tissue thermogenesis remains unclear. The present study first investigated the effect of spermidine on cold-stimulation and ß3-adrenoceptor agonist-induced thermogenesis in lean and high-fat diet-induced obese mice. Next, the role of spermidine on glucose and lipid metabolism in different types of adipose tissue was determined. Here, we found that spermidine supplementation did not affect cold-stimulated thermogenesis in lean mice, while significantly promoting the activation of adipose tissue thermogenesis under cold stimulation and ß3-adrenergic receptor agonist treatment in obese mice. Spermidine treatment markedly enhanced glucose and lipid metabolism in adipose tissues, and these results were associated with the activated autophagy pathway. Moreover, spermidine up-regulated fibroblast growth factor 21 (FGF21) signaling and its downstream pathway, including PI3K/AKT and AMPK pathways in vivo and in vitro. Knockdown of Fgf21 or inhibition of PI3K/AKT and AMPK pathways in brown adipocytes abolished the thermogenesis-promoting effect of spermidine, suggesting that the effect of spermidine on adipose tissue thermogenesis might be regulated by FGF21 signaling via the PI3K/AKT and AMPK pathways. The present study provides new insight into the mechanism of spermidine on obesity and its metabolic complications, thereby laying a theoretical basis for the clinical application of spermidine.


Assuntos
Tecido Adiposo Marrom , Espermidina , Camundongos , Animais , Espermidina/farmacologia , Espermidina/metabolismo , Espermidina/uso terapêutico , Tecido Adiposo Marrom/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Camundongos Obesos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tecido Adiposo/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Obesidade/metabolismo , Glucose/metabolismo , Termogênese , Tecido Adiposo Branco/metabolismo , Camundongos Endogâmicos C57BL
11.
Calcif Tissue Int ; 114(3): 255-266, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38226986

RESUMO

X-linked hypophosphatemia (XLH) is the most common monogenetic cause of chronic hypophosphatemia, characterized by rickets and osteomalacia. Disease manifestations and treatment of XLH patients in the Netherlands are currently unknown. Characteristics of XLH patients participating in the Dutch observational registry for genetic hypophosphatemia and acquired renal phosphate wasting were analyzed. Eighty XLH patients, including 29 children, were included. Genetic testing, performed in 78.8% of patients, showed a PHEX mutation in 96.8%. Median (range) Z-score for height was - 2.5 (- 5.5; 1.0) in adults and - 1.4 (- 3.7; 1.0) in children. Many patients were overweight or obese: 64.3% of adults and 37.0% of children. All children received XLH-related medication e.g., active vitamin D, phosphate supplementation or burosumab, while 8 adults used no medication. Lower age at start of XLH-related treatment was associated with higher height at inclusion. Hearing loss was reported in 6.9% of children and 31.4% of adults. Knee deformities were observed in 75.0% of all patients and osteoarthritis in 51.0% of adult patients. Nephrocalcinosis was observed in 62.1% of children and 33.3% of adults. Earlier start of XLH-related treatment was associated with higher risk of nephrocalcinosis and detection at younger age. Hyperparathyroidism longer than six months was reported in 37.9% of children and 35.3% of adults. This nationwide study confirms the high prevalence of adiposity, hearing loss, bone deformities, osteoarthritis, nephrocalcinosis and hyperparathyroidism in Dutch XLH patients. Early start of XLH-related treatment appears to be beneficial for longitudinal growth but may increase development of nephrocalcinosis.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Perda Auditiva , Hiperparatireoidismo , Hipofosfatemia , Nefrocalcinose , Osteoartrite , Criança , Adulto , Humanos , Raquitismo Hipofosfatêmico Familiar/complicações , Raquitismo Hipofosfatêmico Familiar/genética , Raquitismo Hipofosfatêmico Familiar/diagnóstico , Nefrocalcinose/genética , Nefrocalcinose/complicações , Fatores de Crescimento de Fibroblastos/genética , Hipofosfatemia/epidemiologia , Hipofosfatemia/genética , Fosfatos , Hiperparatireoidismo/complicações , Obesidade/complicações , Perda Auditiva/complicações , Perda Auditiva/tratamento farmacológico
12.
Int J Biol Macromol ; 261(Pt 1): 129797, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38290625

RESUMO

FGF21 plays an active role in the treatment of type 2 diabetes, obesity, nonalcoholic fatty liver disease (NAFLD), and nonalcoholic steatohepatitis (NASH). However, the short half-life and poor stability of wild-type FGF21 limit its clinical application. Previous studies found that PEGylation can significantly increase the stability of FGF21. However, the uneven distribution of PEGylation sites in FGF21 makes it difficult to purify PEG-FGF21, thereby affecting its yield, purity, and activity. To obtain long-acting FGF21 with controlled site-specific modification, we mutated lysine residues in FGF21, resulting in PEGylation only at the N-terminus of FGF21 (mFGF21). In addition, we modified mFGF21 molecules with different PEG molecules and selected the PEG-mFGF21 moiety with the highest activity. The yield of PEG-mFGF21 in this study reached 1 g/L (purity >99 %), and the purification process was simple and efficient with strong quality controllability. The half-life of PEG-mFGF21 in rats reached 40.5-67.4 h. Pharmacodynamic evaluation in mice with high-fat, high-cholesterol- and methionine and choline deficiency-induced NASH illustrated that PEG-mFGF21 exhibited long-term efficacy in improving liver steatosis and reducing liver cell damage, inflammation, and fibrosis. Taken together, PEG-mFGF21 could represent a potential therapeutic drug for the treatment of NASH.


Assuntos
Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Camundongos , Ratos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/uso terapêutico , Fatores de Crescimento de Fibroblastos/farmacologia , Obesidade/tratamento farmacológico , Fígado
13.
PLoS Biol ; 22(1): e3002169, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38271304

RESUMO

Individual signaling pathways, such as fibroblast growth factors (FGFs), can regulate a plethora of inductive events. According to current paradigms, signal-dependent transcription factors (TFs), such as FGF/MapK-activated Ets family factors, partner with lineage-determining factors to achieve regulatory specificity. However, many aspects of this model have not been rigorously investigated. One key question relates to whether lineage-determining factors dictate lineage-specific responses to inductive signals or facilitate these responses in collaboration with other inputs. We utilize the chordate model Ciona robusta to investigate mechanisms generating lineage-specific induction. Previous studies in C. robusta have shown that cardiopharyngeal progenitor cells are specified through the combined activity of FGF-activated Ets1/2.b and an inferred ATTA-binding transcriptional cofactor. Here, we show that the homeobox TF Lhx3/4 serves as the lineage-determining TF that dictates cardiopharyngeal-specific transcription in response to pleiotropic FGF signaling. Targeted knockdown of Lhx3/4 leads to loss of cardiopharyngeal gene expression. Strikingly, ectopic expression of Lhx3/4 in a neuroectodermal lineage subject to FGF-dependent specification leads to ectopic cardiopharyngeal gene expression in this lineage. Furthermore, ectopic Lhx3/4 expression disrupts neural plate morphogenesis, generating aberrant cell behaviors associated with execution of incompatible morphogenetic programs. Based on these findings, we propose that combinatorial regulation by signal-dependent and lineage-determinant factors represents a generalizable, previously uncategorized regulatory subcircuit we term "cofactor-dependent induction." Integration of this subcircuit into theoretical models will facilitate accurate predictions regarding the impact of gene regulatory network rewiring on evolutionary diversification and disease ontogeny.


Assuntos
Ciona intestinalis , Regulação da Expressão Gênica no Desenvolvimento , Animais , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/fisiologia , Ciona intestinalis/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Cell Death Dis ; 15(1): 67, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238320

RESUMO

Non-alcoholic fatty liver disease (NAFLD) has been shown to influence breast cancer progression, but the underlying mechanisms remain unclear. In this study, we investigated the impact of NAFLD on breast cancer tumor growth and cell viability through the potential mediator, hepatic fibroblast growth factor 21 (FGF21). Both peritumoral and systemic administration of FGF21 promoted breast cancer tumor growth, while FGF21 knockout attenuated the tumor-promoting effects of the high-fat diet. Mechanistically, exogenous FGF21 treatment enhanced the anti-apoptotic ability of breast cancer cells through STAT3 and Akt/FoXO1 signaling pathways, and mitigated doxorubicin-induced cell death. Furthermore, we observed overexpression of FGF21 in tumor tissues from breast cancer patients, which was associated with poor prognosis. These findings suggest a novel role for FGF21 as an upregulated mediator in the context of NAFLD, promoting breast cancer development and highlighting its potential as a therapeutic target for cancer treatment.


Assuntos
Neoplasias da Mama , Hepatopatia Gordurosa não Alcoólica , Humanos , Animais , Camundongos , Feminino , Hepatopatia Gordurosa não Alcoólica/metabolismo , Neoplasias da Mama/metabolismo , Fígado/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL
15.
J Physiol Biochem ; 80(1): 41-51, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37914970

RESUMO

Parkin is an ubiquitin-E3 ligase that is involved in cellular mitophagy and was recently shown to contribute to controlling adipose tissue thermogenic plasticity. We found that Parkin expression is induced in brown (BAT) and white (WAT) adipose tissues of aged mice. We determined the potential role of Parkin in the aging-associated decline in the thermogenic capacity of adipose tissues by analyzing subcutaneous WAT, interscapular BAT, and systemic metabolic and physiological parameters in young (5 month-old) and aged (16 month-old) mice with targeted invalidation of the Parkin (Park2) gene, and their wild-type littermates. Our data indicate that suppression of Parkin prevented adipose accretion, increased energy expenditure and improved the systemic metabolic derangements, such as insulin resistance, seen in aged mice. This was associated with maintenance of browning and reduction of the age-associated induction of inflammation in subcutaneous WAT. BAT in aged mice was much less affected by Parkin gene invalidation. Such protection was associated with a dramatic prevention of the age-associated induction of fibroblast growth factor-21 (FGF21) levels in aged Parkin-invalidated mice. This was associated with a parallel reduction in FGF21 gene expression in adipose tissues and liver in aged Parkin-invalidated mice. Additionally, Parkin invalidation prevented the protein down-regulation of ß-Klotho (a key co-receptor mediating FGF21 responsiveness in tissues) in aged adipose tissues. We conclude that Parkin down-regulation leads to improved systemic metabolism in aged mice, in association with maintenance of adipose tissue browning and FGF21 system functionality.


Assuntos
Tecido Adiposo Branco , Tecido Adiposo , Animais , Camundongos , Tecido Adiposo/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Termogênese , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
16.
Biomed Pharmacother ; 170: 115955, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38048735

RESUMO

Immune-checkpoint blockade (ICB) therapies have been widely used in clinical treatment of cancer patients, but only 20-30% of patients benefit from immunotherapy. Therefore, it is important to decipher the molecular mechanism of resistance to ICB and develop new combined treatment strategies. PD-L1 up-regulation in tumor cells contributes to the occurrence of immune escape. Increasing evidence shows that its transcription level is affected by multiple factors, which limits the objective response rate of ICB. Fibroblast growth factor 19 (FGF19), a member of the fibroblast growth factor family, is widely involved in the malignant progression of many tumors by binding to fibroblast growth factor receptor 4 (FGFR4). In this study, we confirmed that FGF19 acts as a driver gene in hepatocellular carcinoma (HCC) progression by binding to FGFR4. The up-regulation of FGF19 and FGFR4 in HCC is associated with poor prognosis. We found that FGF19/FGFR4 promoted the proliferation and invasion of HCC cells by driving IGF2BP1 to promote PD-L1 expression. Knockdown of FGFR4 significantly reduced the expression of IGF2BP1/PD-L1 and inhibited the proliferation and invasion of HCC cells. These biological effects are achieved by inhibiting the PI3K/AKT pathway. The combination of FGFR4 knockdown and anti-PD-1 antibody greatly suppressed tumor growth and enhanced the sensitivity of immunotherapy, highlighting the clinical significance of FGF19/FGFR4 activation in immunotherapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Antígeno B7-H1/genética , Fosfatidilinositol 3-Quinases , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Linhagem Celular Tumoral
18.
Endocrine ; 84(1): 76-91, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38117452

RESUMO

INTRODUCTION: X-linked hypophosphatemia is an orphan disease of genetic origin and multisystem involvement. It is characterized by a mutation of the PHEX gene which results in excess FGF23 production, with abnormal renal and intestinal phosphorus metabolism, hypophosphatemia and osteomalacia secondary to chronic renal excretion of phosphate. Clinical manifestations include hypophosphatemic rickets leading to growth abnormalities and osteomalacia, myopathy, bone pain and dental abscesses. The transition of these patients to adult life continues to pose challenges to health systems, medical practitioners, patients and families. For this reason, the aim of this consensus is to provide a set of recommendations to facilitate this process and ensure adequate management and follow-up, as well as the quality of life for patients with X-linked hypophosphatemia as they transition to adult life. MATERIALS AND METHODS: Eight Latin American experts on the subject participated in the consensus and two of them were appointed as coordinators. The consensus work was done in accordance with the nominal group technique in 6 phases: (1) question standardization, (2) definition of the maximum number of choices, (3) production of individual solutions or answers, (4) individual question review, (5) analysis and synthesis of the information and (6) synchronic meetings for clarification and voting. An agreement was determined to exist with 80% votes in favor in three voting cycles. RESULTS AND DISCUSSION: Transition to adult life in patients with hypophosphatemia is a complex process that requires a comprehensive approach, taking into consideration medical interventions and associated care, but also the psychosocial components of adult life and the participation of multiple stakeholders to ensure a successful process. The consensus proposes a total of 33 recommendations based on the evidence and the knowledge and experience of the experts. The goal of the recommendations is to optimize the management of these patients during their transition to adulthood, bearing in mind the need for multidisciplinary management, as well as the most relevant medical and psychosocial factors in the region.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Hipofosfatemia , Osteomalacia , Adulto , Humanos , Raquitismo Hipofosfatêmico Familiar/genética , Osteomalacia/genética , Osteomalacia/metabolismo , Consenso , Qualidade de Vida , Hipofosfatemia/genética , Hipofosfatemia/metabolismo , Fatores de Crescimento de Fibroblastos/genética
19.
In Vivo ; 38(1): 341-350, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38148081

RESUMO

BACKGROUND/AIM: X-linked hypophosphatemia (XLH), the most common form of hereditary rickets, results from loss-of-function mutations in the phosphate-regulating PHEX gene. Elevated fibroblast growth factor 23 (FGF23) contributes to hypophosphatemia in XLH. This study aimed to characterize PHEX variants and serum FGF23 profiles in Taiwanese patients with XLH. PATIENTS AND METHODS: We retrospectively reviewed the records of 102 patients clinically suspected of having hypophosphatemic rickets from 2006 to 2022. Serum intact Fibroblast growth factor-23 (iFGF23) levels were measured on clinic visit days. PHEX mutations were identified using Sanger sequencing, and negative cases were analyzed using whole-exome sequencing. RESULTS: The majority (92.1%) of patients exhibited elevated FGF23 compared with normal individuals. Among 102 patients, 44 distinct PHEX mutations were identified. Several mutations recurred in multiple unrelated Taiwanese families. We discovered a high frequency of novel PHEX mutations and identified variants associated with extreme FGF23 elevation and tumorigenesis. CONCLUSION: Our findings revealed the PHEX genotypic variants and FGF23 levels in Taiwanese patients with XLH. These results are crucial given the recent approval of burosumab, a monoclonal FGF23 antibody, for XLH therapy. This study provides key insights into the clinical management of XLH in Taiwan.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Humanos , Anticorpos Monoclonais , Raquitismo Hipofosfatêmico Familiar/genética , Raquitismo Hipofosfatêmico Familiar/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Mutação , Recidiva Local de Neoplasia , Endopeptidase Neutra Reguladora de Fosfato PHEX/genética , Estudos Retrospectivos
20.
Gen Comp Endocrinol ; 347: 114426, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38103843

RESUMO

Fibroblast growth factors (FGFs) are a family of structurally related peptides that regulate processes such as cell proliferation, differentiation, and damage repair. In our previous study, fibroblast growth factor receptor 4 (fgfr4) was detected in the most significant quantitative trait loci (QTL), when identified of QTLs and genetic markers for growth-related traits in spotted sea bass. However, knowledge of the function of fgfr4 is lacking, even the legends to activate the receptor is unknown in fish. To remedy this problem, in the present study, a total of 33 fgfs were identified from the genomic and transcriptomic databases of spotted sea bass, of which 10 were expressed in the myoblasts. According to the expression pattern during myoblasts proliferation and differentiation, fgf6a, fgf6b and fgf18 were selected for further prokaryotic expression and purification. The recombinant proteins FGF6a, FGF6b and FGF18 were found to inhibit myoblast differentiation. Overall, our results provide a theoretical basis for the molecular mechanisms of growth regulation in economic fish such as spotted sea bass.


Assuntos
Bass , Animais , Bass/genética , Transcriptoma , Perfilação da Expressão Gênica , Genômica , Fatores de Crescimento de Fibroblastos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...